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This article is concerned with the mean velocity distributions of two-dimensional fully developed
turbulent plane-channel flows. To yield reliable information, the authors performed detailed hot-wire
measurements for more than 12 Reynolds numbers. The experimental investigations covered a wide
range of the Reynolds numbers up to Ret'53103, where Ret is based on the wall friction velocity
and the channel half-height. From the distribution of the mean velocity gradient (dU1/dy1)
5 f (y1) the entire flow field was analyzed, resulting in a logarithmic region for the mean velocity
profile in the inertial sublayer, extending almost up to the center of the channel at higher Reynolds
numbers. The analysis of the experimental results yield a value of the von Ka´rmán constant,k, close
to 1/e('0.37) independent of the Reynolds number and the additive constantB53.70, which is
close to 10/e, i.e., U15e ln y1110/e5(1/0.37)lny113.70. © 2003 American Institute of
Physics. @DOI: 10.1063/1.1608010#

I. INTRODUCTION AND AIM OF THE WORK

Research on turbulent flows basically started with the
discovery of Reynolds in 1883 that pipe flows, depending on
a dimensionless number later named the Reynolds number,
consist of basically two different modes, either laminar or
turbulent. Reynolds1 also found that the transition from the
laminar to the turbulent mode sets in intermittently by
‘‘flashes’’ that occur in localized regions when the Reynolds
number exceeds a so-called. ‘‘critical’’ value. As the Rey-
nolds number increases, the frequency of these ‘‘flashes’’ in-
creases until a state of fully developed turbulence is obtained
in the downstream direction of the so-called core region. All
these fundamental properties of pipe flows were later found
to represent common features of wall-bounded flows and,
hence, also occur in nominally two-dimensional channel
flows, the flow investigated by the present authors. The
present investigations were carried out in air-driven plane-
channel of aspect ratio~width/height! 12:1, covering a wide
range of Reynolds number up to Ret'53103. The basic
measuring technique employed in this work was hot-wire
anemometry.

The authors’ research into nominally two-dimensional
fully developed turbulent plane-channel flow was triggered
by recent publications containing suggestions for the normal-
ized mean velocity distribution in the so-called overlapping
region of the flow, being either a logarithmic or a power law
~see, e.g., works by Barenblattet al.,2,3 Wosnik et al.,4 and
Österlundet al.,5,6 and also the early work of von Ka´rmán,7

Prandtl,8,9 Taylor,10 and Millikan11!. From that previous
work, it was concluded that the turbulent velocity profiles in
plane channel flows should obey a logarithmic law,U1

5(1/k)ln y11B. The arguments by Barenblattet al.,2,3 in
particular, convinced the present authors to look again at the
mean velocity profile of two-dimensional fully developed
plane-channel flows. A further motivation for the current
work also resulted from questions regarding the accuracy of
the experimental data, especially at high enough Reynolds
number flows. A wide scatter in values of the constants of the
logarithmic law of the law was found in the literature. A
summary of previous results found in the literature for both
the von Kármán, k, and the additive constants,B, is given in
Figs. 1~a! and 1~b!, respectively.

This scatter could be attributed either to inconsistencies
in the general trends of the available experimental data
which might be related to improper measuring equipment,
the measurement of the wall friction velocity,ut , or to low
Reynolds number, i.e., Ret<103, effects~see, e.g., Ref. 12!.
Furthermore, theoretical postulations of flow behavior can
yield wrongk-values. This encouraged the authors to extend
the existing experimental data, applying more robust measur-
ing and analysis techniques.

It was also a clear aim of the present work to carry out
an analysis of the experimental data without any hypothesis
about the structure of the turbulent wall-bounded channel
flows. Hence the authors’ experiments, aimed at direct mea-
surements of the time-averaged velocities and from that the
mean velocity gradient, (dU1/dy1), was intended to give
direct measurements of the small term in the corresponding
momentum equation. From ln(dU1/dy1)5 f (ln y1) the
value of the von Ka´rmán constant,k, of the logarithmic law
of the wall was derived. With this consistent approach, the
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authors aimed at obtaining reliable information regarding the
mean velocity distribution in two-dimensional fully devel-
oped turbulent plane-channel flow. A wide range of the Rey-
nolds number was covered and in this range an overall pic-
ture resulted regarding the Ret dependence of the time-
averaged velocity profile. For the high Ret range of the flow,
the analysis of the authors’ experimental results indicates the
existence of a ‘‘logarithmic mean velocity distribution,’’ with
a von Kármán constant,k, close to 1/e('0.37). The experi-
mental results and their analysis yielding this result are de-
scribed in some detail. Other interesting features of the mean
flow investigations are also reported.

II. GOVERNING EQUATIONS AND CLASSICAL
THEORIES

As far as the mean properties of turbulent flows are con-
cerned, they are best described by the mean continuity and
mean momentum equations, the so-called Reynolds equa-
tions. If these are adapted to the two-dimensional fully de-
veloped turbulent plane-channel flow, the following normal-
ized equation results:

dU1

dy1 5F12
y1

Ret
G1u18u28

1, ~1!

where the normalization of all these terms in the equation is
carried out with the following characteristic velocity, length
and time scales:

uc5ut5Atv /r, l c5n/ut , tc5n/ut
2. ~2!

Here Ret is defined as Ret5(utH/2)/n, H being full of the
channel height.

Considerations suggested that the data to be measured to
analyze flows described by Eq.~1! should be either
(dU1/dy1) or 2u18u28

1. If one of these quantities is known

from experiments, the other can be deduced using the above
mean momentum equation. In the region close to the wall,
both of these terms vary strongly. If one is interested in the
U1(y1) distribution, one should measure (dU1/dy1) di-
rectly and deduce from it theU1-variation withy1. To mea-
sure or to model2u18u28

1 in the region where it is the much
larger term in Eq.~1! is not the right way to getU1(y1)
deduced correctly. A small error in the2u18u28

1 will yield a
large error in the deducedU1(y1) distribution.

To obtain a differential equation from Eq.~1! for the
derivation ofU15F(y1), early attempts with wall-bounded
turbulent flows concentrated on the derivation of equation
for the turbulent momentum transport term2u18u28

1.
Prandtl8,9 developed an expression for the normalized mo-
mentum transport based on a mixing length hypothesis:

2u18u28
15 l 12UdU1

dy1U dU1

dy1 . ~3!

He suggested that the mixing length increases linearly with
the wall distance, i.e.,l 15kPy1, wherekP is a constant.

On the basis of mainly dimensional considerations, von
Kármán7 proposed the following expression for the normal-
ized turbulent transport term

2u18u28
15kK

2U ~dU1/dy1!3

~d2U1/dy12
!2U dU1

dy1
, ~4!

wherekK was suggested to be a constant and was found by
various investigations to lie in the range 0.334<k<0.436.

Just to give one further example, Deissler13 proposed
some kind of a damping function to take wall effects on the
turbulent momentum transport term into account, yielding

FIG. 1. Values of the constants of the logarithmic law of the wall obtained from various investigations:~a! von Kármán constant,k and ~b! additive
constantB.
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2u18u28
15c2U1y1@12exp~2c2U1y1!#

dU1

dy1
. ~5!

In this equation,c was taken as a constant and was deter-
mined experimentally to bec50.124. Some other attempts
have been made to derive expressions for2u18u28

1, e.g.,
those of Taylor10 and Reichardt,14 but their considerations do
not bring further knowledge into the argument to be provided
here. Hence no further references to the literature on
2u18u28

1 derivations are given at this point.
The above approaches to treat2u18u28

1 ‘‘theoretically’’
and then to deduce from Eq.~1! a relationship forU1

5F(y1) have often been utilized in the literature but are far
from being optimum to deduceU1 information. This is
readily seen from Fig. 2, which shows the four terms in Eq.
~1! indicating that, over a large and the most important part
of the flow, at least for this study, (dU1/dy1) is the smallest

term of the four. Hence this term is more sensitive to ‘‘mod-
eling inaccuracies’’ occurring from the assumptions, e.g., in-
troduced by Eqs.~3!–~5!.

In general, it can be said that it is not a good approach to
model the2u18u28

1 term in Eq.~1! and then to deduce infor-
mation aboutU15F(y1), i.e., the functional relationship
for the normalized mean velocity profile. In spite of this
general conclusion drawn from Fig. 2, the generally adapted
analytical approaches are still the usual means for obtaining
U1 information, as proposed in the early work of von
Kármán,7 Prandtl,8,9 Taylor,10 Deissler,13 etc. For the experi-
mental work described in this article, the authors chose a
different approach for the analysis of their data. Searching
for a logarithmic velocity profile, the analysis of
ln(dU1/dy1)5 f (ln y1) has been done having the advantage
that it does not contain an additive constant of the law of
the wall in the case when a real logarithmic velocity profile
exists.

III. EXPERIMENTAL APPARATUS AND MEASURING
TECHNIQUES

A. Wind tunnel and channel test section

The experiments were carried out at LSTM, using the
channel flow test section sketched in Fig. 3~a!. The dimen-
sions of the cross-section of the channel were 600350 mm,
providing a channel aspect ratio of 12:1. This aspect ratio
was considered large enough, e.g., Dean,15 recommended
7:1, to ensure the required two-dimensionality of the inves-
tigated turbulent, plane-channel flows. The total length of the
channel setup was 6500 mm, corresponding to anL/H ratio
of 130. The flow was triggered at the channel entrance using
well-organized tap letters such as X by using DYMO Label
Printers. Seven rows of such stripes were used for tripping
the flow, as can be seen from Fig. 3~b!, and each row had a
height of approximately 0.75 mm. The actual measuring lo-
cation was taken at a distance from the channel inlet ofx
51153H. This length was considered to be sufficient to
ensure a fully developed turbulent channel flow before reach-
ing the measuring test section~see, e.g.,! Ref. 16, and was far
enough away from the channel outlet to ensure no outlet

FIG. 2. Magnitude of the four terms in the mean momentum equation.
Equation~1!, for two-dimensional fully developed turbulent plane-channel
flow.

FIG. 3. ~a! Sketch of the channel flow test setup with the temperature, pressure, shear stress and velocity measuring equipment and~b! photograph showing
the tripping device~DYMO Brand X-letter!.
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disturbances to the flow. Hence prior to carrying out the ac-
tual measurements, the conditions were set up correctly to
ensure by carefully choosing the channel dimensions and
measuring locations, the two-dimensionality of the flow and
its state of full development. The actual air flow was pro-
vided by a centrifugal blower. Its outlet was connected to a
well-designed settling chamber to ensure the uniformity of
the flow entering the channel inlet cross-section. After the
outlet of the blower, in the downstream direction, the first
essential flow control in the plenum chamber was located,
consisting of two perforated plates with 52% of the cross-
section consisting of 10310 mm2 openings and separated by
30 cm distance from the blower and each other. The second
flow controlling part in the plenum chamber was a ‘‘honey-
comb plate’’ with a mesh size of 8 mm diameter and a total
length of the tubes of 160 mm. These passive flow control
devices inside the plenum chamber were located in such a
way as to yield a well-controlled inlet flow to the actual
channel test section. The entire flow was setup in accordance
with Loehrke and Nagib.17

The flow rates at the investigated Ret were controlled by
changing the speed of the radial blower blades by means of a
frequency converter control unit, providing impeller rota-
tional speeds of approximately 100–2000 rpm. This corre-
sponded to a mean velocity range of the channel flow from 3
to 75 m/s with a centerline turbulence level of less than 0.3%
at the axis of the channel inlet cross section. For all the
measurements, the mean flow velocity through the channel
entrance was measured using a Pitot tube. The outlet of the
Pitot tube was connected to a precision pressure transducer
operated by a computer with a 16-bit DAQ card. The mean
flow velocity was used to compute the mean-based Reynolds
number of the flow as

Rem5
ŪH/2

n
. ~6!

Hence, as the above description shows, the test facility
was designed carefully to carry out measurements over a
wide range of Reynolds numbers up to Rem'1.23105.

B. Measuring techniques

1. Pressure measurements

To provide the basis for the analysis of the authors’ data,
as reported in Sec. IV, pressure measurements were carried
out to obtain the wall shear stress,tw , for each investigated
Rem of the flow. For this purpose, pressure tappings were
installed along the test section’s top wall~the wide side of
the cross section!. These were employed over a 5 mlength of
the test section, where 19 pressure tappings were located to
provide the streamwise pressure gradient, dP/dx, distribu-
tion for each investigated flow. Three static pressure tappings
were installed at each of the 19 pressure-measuring loca-
tions, one at the centerline of the channel and two on both
sides, 10 cm apart from the center point. Care was taken to
ensure that the inner surface of the top side of the channel
where the holes were drilled was free from drilling problems
~i.e., smoothness was insured around the pressure tappings!.
All pressure measurement points were connected to a scan-

ning valve to facilitate switching from one point to another
and the corresponding static pressure was then measured and
recorded for different air flow velocities~see Fig. 4!. It is
clear from Fig. 4 that the flow field was fully developed for
all cases under investigation at least as far as the pressure
distribution in the flow direction is concerned. In addition to
the pressure measurements and corresponding to the air
stream temperature in the channel, the air density and kine-
matic viscosity were calculated for the purpose of normaliza-
tion using the following relations for density,

r5
~Patm1Pst!

RT
, ~7!

and Sutherland’s correlation for the kinematic viscosity,

n51.45831026
T3/2

r~T1110.4!
, ~8!

wherePatm is the atmospheric pressure andR5279.1 J/kg K
is constant for air under the ideal gas law.

The mean static pressure,Pst, measurements in Fig. 4
were used to evaluate the static pressure gradient, dP/dx,
which in turn was employed to obtain the wall shear stress
and the wall friction velocity,ut , as follows:

tw52
H

2 S dP

dx D , ut5Atw

r
. ~9!

As a result, the wall skin friction data were obtained inde-
pendently of the velocity profile using the pressure gradient
measurements provided in Fig. 4. Thereafter, the wall fric-
tion velocity, ut5Atw /r, and the kinematic viscosity,n,
were used for scaling all results to yield the normalized ve-
locity distribution over the channel half-width.

2. Oil film interferometry

Accurate and preferably independent/direct measure-
ment of the wall-shear stress is of primary importance for
determining the exact values of the constants of the law of

FIG. 4. Pressure gradient distributions along part of the channel at different
Reynolds numbers.
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the wall. Oil film interferometry is a promising direct tech-
nique to obtain accurate values of the wall friction data. The
basic concept of the oil film to measure the wall shear stress
is to follow the movement of fringes which result from the
interference pattern of a thin film illuminated by monochro-
matic light, see Tanner and Blows18 and Fernholzet al.19

An oil film of thicknessh5h(x,t) is placed inside the
test section where wall shear stress measurements are de-
sired. Figure 5 shows a photograph of the oil film setup with
the channel test section. The oil film is then driven by the
imposed wall shear stress,t(x,h,t), at the free surface, and
therefore the stress can be evaluated experimentally by mea-
suring h(x,t). The variation of the oil film thickness in a
two-dimensional flow is given by

]h

]t
1

th

m

]h

]x
1

h2

2m

]t

]x
50. ~10!

Equation~10! states that to obtain a value of the wall shear
stress, it is necessary to measureh, ]h/]x, and]h/]t. For
fully developed flow,]t/]x50, and therefore Eq.~10! re-
duces to

]h

]t
1

th

m

]h

]x
50. ~11!

Equation~11! shows thath is constant in anx2t plane along
characteristic trajectories and the inverse slope of these tra-
jectories, contour lines, is

uk5
dx

dt
5

th

m
, ~12!

expressing the rate of fringe movement,uk , which is usually
generated by cutting the captured images~see Fig. 6!. Hence
the fringe velocities,uk , are obtained from an arbitrary num-
ber of fringes,k ~about 10!. As a result, the skin friction
information is obtained and the solution of Eq.~11! gives the
wall shear stress:

tw5muk

2@n22sin2 a#1/2

l@k1h0 /Dh#
, ~13!

whereh0 is the height of the zeroth black fringe at the film
edge~i.e., k50), hk is the height of the film at thekth black
fringe, andDh is the height difference between two consecu-
tive fringes:

Dh5
l

2@n22sin2 a#1/2
, ~14!

wherel is the light wavelength,n is the refractive index of
the oil, anda is the camera viewing angle. Values ofm, n, a,
andl are usually given and from thex2t diagram an arbi-
trary number of fringe velocities,uk , are measured. The au-
thors have carried out an error analysis using Eq.~13! to
evaluate the accuracy of the oil film technique finding that it
lies within 62.5%. The major uncertainty for this accuracy
arises from the accuracy of the oil viscosity measurements.

3. Hot-wire anemometry

The velocity profile measurements reported in this ar-
ticle were carried out using a DANTEC 55M10 constant-
temperature anemometer. To adjust the system, the instruc-
tions provided in the manual were followed, both for the
calibration of the system and for its employment for the
present channel flow investigations. The hot-wire measure-
ments of the local velocity were carried out with a boundary
layer probe~DANTEC, Type 55P15!, equipped with a wire
of 5 mm diameter and an active wire length of 1.25 mm,
providing an aspect ratio,l /d, of 250. Hence the wire had a
sufficiently large aspect ratio to suggest a negligible influ-
ence of the prongs on the actual velocity measurement. All
calibrations and measurements were performed with an 80%
overheat ratio,a5(Rw2Ra)/Ra , where Rw is the opera-
tional hot-wire resistance andRa is the resistance of the cold
wire, i.e., at ambient air temperature. Before each set of mea-
surements, the hot-wire probe was calibrated against velocity
measured with a Pitot tube at the channel entrance where a
uniform and well-defined flow field existed. The Pitot tube
was installed directly at the centerline of the channel input

FIG. 5. Photograph of the oil-film optical test setup.

FIG. 6. Oil film thickness development over thex2t diagram for a constant
wall shear stress.
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cross-section and its output was connected to a precision
pressure transducer for both stagnation,P0 , and static,Pst,
pressure measurements. The pressure transducer, Valdyne
differential type, was used for measuring the pressure with
an accuracy of60.25%. In addition, the air temperature in-
side the tunnel was measured at all times during measure-
ments within accuracy range of60.05 °C. To obtain the ve-
locity dynamic head of the Pitot tube, the mean static
pressure was measured 25 mm downstream of the Pitot
probe.

Along a streamline at the input of the channel centerline,
integrating the momentum equation results in the well-
known Bernoulli equation, which applies between a point in
the flow and stagnation point on the same streamline:

P0

r
5

Pst

r
1

Ū2

2
, ~15!

wherer is the air density. By rearranging the terms of the
above equation, the mean velocity,Ū, of the air flow at
channel entrance was obtained,Ū5@2(P02Pst)/r#1/2.

Hence, the time-averaged air velocity for calibration was
simply calculated by measuring the pressure difference be-
tween the stagnation pressure,P0 , and the static pressure,
Pst, using a differential pressure transducer. The ambient
conditions were monitored before and during each test run
using an electronic barometer and thermometer. All measur-
ing equipment were connected to an A/D converter board
from National Instruments with 16 bit resolution and 8 input
channels. In addition, a computer-based programming sys-
tem was used for acquiring and processing all the measured
data.

To employ the calibration data for the hot-wire measure-
ments, a fourth-degree polynomial fit was chosen for fitting
the calibration data with an accuracy of better than61%. To
ensure that the original calibration curve was maintained dur-
ing one entire set of hot-wire measurements, the calibration
curves were rechecked after each set of measurements cov-
ering the entire range of velocities experienced in the wall
region for each investigated flow case. If the deviations of
the calibration were more than61%, the entire set of data
was rejected and the measurements for the corresponding
Ret were repeated.

4. Wall distance

Great care was taken to ensure a precise location of the
hot wire at a reference distance from the wall. A calibration
positioning procedure proposed by Bhatiaet al.20 and Durst
et al.21 was applied; it is given with more detail in Durst
et al.22 The location of the hot wire, therefore, in the vertical
direction was adjusted by measuring the HWA output at zero
flow velocity in the channel as close as possible to the chan-
nel wall surface, and from the position calibration line the
corresponding position of the wire was estimated. The abso-
lute error in the wire positioning was65 mm.

IV. RESULTS AND ANALYSIS

Employing the measuring techniques described in Sec.
III B, the authors carried out experiments for the following
Reynolds numbers, based on the wall friction velocity and
the channel half-height:

Ret51167,1543,1850,2155,2573,2888,

3046,3386,3698,3903,4040,4605,4783.

In wall-bounded turbulent flows, the wall shear stress is con-
ventionally expressed in terms of the local skin friction co-
efficient, i.e., in dimensionless form, as

cf5
tw

1

2
rŪ2

. ~16!

By introducing the wall friction velocity,ut5Atw /r, Eq.
~16! can be rearranged to yield

cf52Fut

Ū G2

. ~17!

Therefore, by means of Eq.~17!, it was easy to determine the
wall skin friction coefficient experimentally by measuring
the integral flow parameters,Ū, T, and dP/dx, or the rate of
fringe movement of the oil film,uk . The resultant data for
the wall skin friction coefficient which were obtained from
both the pressure gradient and the local measurements by oil
film are presented in Fig. 7. Good agreement of the wall skin
friction data was found between the pressure gradient and the
oil film, which supports the two-dimensionality of a channel
of 12:1 aspect ratio. The data in Fig. 7 also compared well
with Dean’s15 formula:

cf50.073 Re20.25, ~18!

where Re is based on the channel full-height and, from the
error analysis, the shear stress measurements were found to
be accurate within62.5% of the mean values. As a result,

FIG. 7. Measured skin friction coefficient from the pressure gradient and the
oil film interferometry compared with Ref. 15.
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the present work suggests the following modified equation
for representation of the wall skin friction data:

cf50.058 Rem
20.243. ~19!

Utilizing the wall friction data, the present mean velocity
distributions were normalized using the corresponding wall
shear velocity,ut , to yield the dimensionless mean velocity
distribution, U15F(y1). The resultant velocity profiles
were then analyzed with respect to the question of whether
the profile in the inertial sublayer behaves in a logarithmic
manner, as proposed by Prandtl,8,9 von Kármán,7 and
Millikan:11

U15
1

k
ln y11B, ~20!

where k is the von Kármán constant andB is an additive
constant.

The present study also embraced the question of whether
the velocity profile obeys a power law as proposed in the
earlier investigations of Millikan,11 and more recently sug-
gested by Barenblattet al.2,3 and Wosniket al.,4 i.e., in the
form

U15Cy1g. ~21!

whereC and g are empirical constants, but are often Rey-
nolds number dependent.

Further, to see more clearly the effect of the Reynolds
number on the mean velocity profile, the following diagnos-
tic functions recently suggested by O¨ sterlund et al.5,6 and
Wosnik et al.4 are introduced:

J5y1
dU1

dy1
, G5

y1

U1 FdU1

dy1 G , ~22!

which represent the normalized slopes of the mean velocity
distribution in either the logarithmic or the power region,
respectively, and the behavior of both functions is shown in
Fig. 8.

A constant behavior ofJ for high enough Reynolds
numbers leads to the existence of a logarithmic layer sup-
porting Millikan’s,11 argument that a logarithmic law is ex-

pected in a high Reynolds number turbulent channel flow
with a constant value of the von Ka´rmán constant. In the
inertial sublayer, allJ profiles in Fig. 8 showed a constant
slope aty1>150, which means that the logarithmic law is a
good representation of the mean velocity measured in the
overlap region for Ret>23103 ~see Ref. 38!. In addition, a
constant behavior of the power-law diagnostic function,G,
indicates that the mean velocity profile should behave in a
power form. However, the general trend of the power-law
diagnostic function is a monotonic decrease when plotted
versus wall distance, as shown in Fig. 8. Therefore, the
power law is far from useful to describe the mean velocity
profile in the overlap region~see, e.g., the work by Clauser,24

who came to the conclusion that no universal values can be
assigned toC and g!. As a result, the behavior of theJ
function indicates clearly that the normalized mean velocity
profiles of two-dimensional fully developed turbulent plane-
channel flows is well described by a logarithmic velocity
distribution.

To proceed further to obtain the exact value of the von
Kármán constant of the logarithmic law of the wall, the au-
thors adopted a new approach rather than following that in
the earlier investigations~see, e.g., Refs. 5 and 6!. The new
approach mainly depends, as proposed by the authors, in
both Secs. I and II, on the natural logarithm of the mean
velocity gradient and for this purpose a selected sample of
the data is shown in Fig. 9. The upper limit of each indi-
vidual case where the logarithmic law can fit the data well
was found to be higher than the traditional upper limit, i.e.,
y150.15(H1/2) or 0.2(H1/2), and it increases with in-
creasing Reynolds number~see Fig. 9!. This resulted in Fig.
10, indicating that the interval over which the logarithmic
law could be applied increases with increasing Reynolds
number and extends almost up to the center of the channel
for the highest Reynolds number case~see, e.g., Refs. 25 and
26!. However, the lower limit was found to be common and
equal toy15150 for almost all the cases and the upper limit
extends toy1'75% of (H1/2), corresponding to the high-
est value of the Reynolds number. The results shown in Fig.
9 showed the same pattern where the logarithmic law fits the
data well within the experimental error for different Rey-
nolds numbers. Therefore, for the purpose of the current
analysis, all the data shown in Fig. 8 were replotted in the
range 50<y1<75% of (H1/2) and are shown in Fig. 11;
however, the fitting process only considered data fromy1

5150 to avoid the overshoot ofU1 for small Re values. All
the higher Reynolds numbers, i.e., Ret.1.53103, results
corresponding to the different Reynolds numbers mentioned
earlier showed the same pattern where the logarithmic law
represents the data within the experimental error. The region
where there was a good fit of the data to the logarithmic law
was considered for the least-squares curve fit yielding a re-
liable value of the von Ka´rmán constant. From Eq.~20! the
logarithmic law of the wall can be rewritten as follows:

FIG. 8. Diagnostic functions for the law of the wall.
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U15
1

k
ln y11B⇒ dU1

dy1
5

1

ky1
⇒ lnFdU1

dy1 G
52 ln y11 lnF1

kG . ~23!

As a consequence, using an optimized least-squares curve fit
for the best fit of every individual case over the new upper
and lower limits resulted in a value of 162.5% for the inter-
cept ln @1/k# ~see Fig. 9!. As a result, the data in Fig. 11

FIG. 9. Samples of mean velocity gradient for different Reynolds numbers, plotted double-logarithmically.

FIG. 10. Maximum extent of logarithmic law region represented using inner
scale.

FIG. 11. A ln dU1/dy12 ln y1 representation of the mean velocity gradient
over a wide.
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suggest that there exists a functional relationship for the far
distant region of the normalized mean velocity distribution
and it is given by

lnFdU1

dy1 G52 ln y11162.5%. ~24!

Hence, taking the intercept in Eq.~24! equal to 1.0~within
an accuracy of measurements of62.5%! results in

lnFdU1

dy1 G52 ln y111⇒ lnF y1
dU1

dy1 G51⇒F y1
dU1

dy1 G5e,

~25!

k5F y1
dU1

dy1 G21

5
1

e
, ~26!

which is an interesting result deduced from the authors’ ex-
perimental data. This readily suggests a logarithmic region
for the far field of the normalized mean velocity profile with
a von Kármán constant ofk51/e.

The mean value of the second constant of the logarith-
mic law of the wall, an additive constantB, was obtained
from the mean velocity profile as described below:

C5U12
1

k
ln y1. ~27!

A constant behavior ofC ~see Fig. 12! in the region where
the logarithmic law is valid was considered for an average
calculation over all Reynolds numbers.

The results are summarized in Fig. 13 for all the cases
where the limits arey15150 andy/(H/2)50.20 in compari-
son with the results over the author’s new limits. From this
figure, for Ret>23103, we found that following the tradi-
tional technique for data processing proposed by O¨ sterlund
et al.5,6 resulted in a von Ka´rmán constant of 0.37, which is

very close tok51/e, obtained with the authors’ new limits,
and the mean value of the additive constant was found to be
B53.7, which is close to 10/e.

V. CONCLUSIONS, FINAL REMARKS, AND OUTLOOK

The present work concentrated on the normalized mean
velocity distribution for two-dimensional fully developed
turbulent plane-channel flows. A logarithmic velocity distri-
bution was found, giving a good approximation of the veloc-
ity profile in a fairly large part of the channel core region,
almost up to the center of the channel for high Reynolds
number. However, the constants in the logarithmic profiles
were found to vary with Reynolds number values of Ret<2
3103. For the high Reynolds number cases, i.e., for Ret>2
3103, limited values of the constants in the logarithmic ve-
locity profile were found. The present data yield a value of
the von Kármán constant,k, close to 1/e('0.37) indepen-
dent of the Reynolds number. Such a value was also claimed
by Goldstik and Stern.27 In addition, the additive constant in
the authors’ experiments was found to beB53.7, which is
close to 10/e.

It is worth noting here that the logarithmic law was ana-
lytically deduced by Millikan,11 using fundamental relation-
ships obtained by Prandtl8,9 and von Kármán.7 Later, work
by Yajnik28 proposed a theory to describe pipe and channel
flows using matched asymptotic expansions together with
asymptotic hypotheses describing the order of various terms
in the equations of mean motion and turbulent kinetic energy.
Yajnik’s theory leads to asymptotic laws corresponding to
the law of the wall~the logarithmic law!, the velocity defect
law, and the law of the wake~see also work by Afzal and
Yajnik,29 Afzal,30 Tennekes,31 and Gill32!.

More recently, based on the Liegroup symmetry method,
Oberlack33 has provided the first derivation of the log-law
from that can be considered as first principles. It is obtained
from the symmetry properties of the transport equation for
the two-point, velocity-velocity, correlation function in the
range of separations and distances from the wall that are
large enough for viscous influence to be negligible.

FIG. 12. The additive constant of the logarithmic law of the wall as a
function of y1.

FIG. 13. Summary of the von Ka´rmán constant and the additive constant
versusRet .
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The authors would like to stress that the above given
values fork51/e('0.37) andB53.7('10/e) result from
careful measurements in a plane-channel flow for high Rey-
nolds numbers. However, for low Reynolds number, i.e.,
Ret,23103, both the von Ka´rmán and the additive con-
stants were found to be Reynolds number-dependent,~see,
e.g., Ref. 34!. It is worth mentioning that following the tra-
ditional technique for data processing proposed by O¨ sterlund
et al.,5,6 which applied to the overlap region where the loga-
rithmic law fits the data well, resulted in a Reynolds number
independence of the von Ka´rmán constant for Ret>23103.
If only data for Ret>23103 is used,k is found to be 0.37,
which is in very close agreement with the present finding. It
is also worth noting that the von Ka´rmán constant,k, ob-
tained in this work significantly differs from the value de-
duced by Zagarola and Smits,35 who foundk50.436. This
high value in the turbulent pipe flow suggests to apply hot
wire and laser Doppler measurements in pipe flows and to
apply the data analysis employed by the authors in this
article.36–49

ACKNOWLEDGMENTS

Funds received from LSTM-Erlangen to carry out the
work and from the Universita¨tbund Erlangen-Nu¨rnberg e.V.
to build the test section are appreciated.

1O. Reynolds, ‘‘On the dynamical theory of incompressible viscous fluids
and determination of the criterion,’’ Philos. Trans.186, 123 ~1883!.

2G. I. Barenblatt, ‘‘Scaling laws for fully developed shear flows. Part 1.
Basic hypotheses and analysis,’’ J. Fluid Mech.248, 513 ~1993!.

3G. I. Barenblatt and A. J. Chorin, ‘‘Scaling laws for fully developed shear
flows. Part 2. Processing of experimental data,’’ J. Fluid Mech.248, 521
~1993!.

4M. Wosnik, L. Castillo, and W. George, ‘‘A theory for turbulent pipe and
channel flows,’’ J. Fluid Mech.421, 115 ~2000!.
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